Q1.

The diagram shows a metal plate ABCDEF which has been made by removing the two shaded regions from a circle of radius 10 cm and centre O. The parallel edges AB and ED are both of length 12 cm.

(i) Show that angle DOE is 1.287 radians, correct to 4 significant figures. [2]

(ii) Find the perimeter of the metal plate. [3]

(iii) Find the area of the metal plate. [3]

Q2.

In the diagram, OAB is an isosceles triangle with OA = OB and angle AOB = 2θ radians. Arc PST has centre O and radius r, and the line ASB is a tangent to the arc PST at S.

(i) Find the total area of the shaded regions in terms of r and θ. [4]

(ii) In the case where θ = \(\frac{1}{3}\pi\) and r = 6, find the total perimeter of the shaded regions, leaving your answer in terms of \(\sqrt{3}\) and \(\pi\). [5]

Q3.
Q4.

In the diagram, AB is an arc of a circle, centre O and radius 6 cm, and angle $AOB = \frac{1}{3}\pi$ radians. The line AX is a tangent to the circle at A, and OBX is a straight line.

(i) Show that the exact length of AX is $6\sqrt{3}$ cm. \[1\]

Find, in terms of π and $\sqrt{3}$,

(ii) the area of the shaded region, \[3\]

(iii) the perimeter of the shaded region. \[4\]

Q5.

In the diagram, ABC is an equilateral triangle of side 2 cm. The mid-point of BC is Q. An arc of a circle with centre A touches BC at Q, and meets AB at P and AC at R. Find the total area of the shaded regions, giving your answer in terms of π and $\sqrt{3}$. \[5\]
In the diagram, AB is an arc of a circle with centre O and radius r. The line XB is a tangent to the circle at B and A is the mid-point of OX.

(i) Show that angle $AOB = \frac{1}{3}\pi$ radians. \[2\]

Express each of the following in terms of r, π and $\sqrt{3}$:

(ii) the perimeter of the shaded region. \[3\]

(iii) the area of the shaded region. \[2\]

Q6.

In the diagram, OAB is a sector of a circle with centre O and radius 8 cm. Angle BOA is α radians. OAC is a semicircle with diameter OA. The area of the semicircle OAC is twice the area of the sector OAB.

(i) Find α in terms of π. \[3\]

(ii) Find the perimeter of the complete figure in terms of π. \[2\]

Q7.
Q8. The diagram shows a circle \(C \) with centre \(O \) and radius 3 cm. The radii \(OP \) and \(OQ \) are extended to \(S \) and \(R \) respectively so that \(OQS \) is a sector of a circle with centre \(O \). Given that \(PE = 6 \) cm and that the area of the shaded region is equal to the area of circle \(C \).

(i) show that angle \(POQ = \frac{1}{3} \pi \) radians. \(\text{[3]} \)

(ii) find the perimeter of the shaded region. \(\text{[2]} \)

Q9. The diagram shows a semicircle \(ABC \) with centre \(O \) and radius 6 cm. The point \(B \) is such that angle \(BOA \) is 90° and \(BD \) is an arc of a circle with centre \(A \). Find

(i) the length of the arc \(BD \). \(\text{[4]} \)

(ii) the area of the shaded region. \(\text{[3]} \)
Q10.

The diagram shows two circles, C_1 and C_2, touching at the point T. Circle C_1 has centre P and radius 8 cm; circle C_2 has centre Q and radius 2 cm. Points R and S lie on C_1 and C_2 respectively, and RS is a tangent to both circles.

(i) Show that $RS = 8$ cm. [2]

(ii) Find angle RPQ in radians correct to 4 significant figures. [2]

(iii) Find the area of the shaded region. [4]

Q11.

The diagram shows a rhombus $ABCD$. Points P and Q lie on the diagonal AC such that BPD is an arc of a circle with centre C and BQD is an arc of a circle with centre A. Each side of the rhombus has length 5 cm and angle $BAD = 1.2$ radians.

(i) Find the area of the shaded region $BPDQ$. [4]

(ii) Find the length of PQ. [4]
The diagram represents a metal plate $OABC$, consisting of a sector OAB of a circle with centre O and radius r, together with a triangle OCB which is right-angled at C. Angle $AOB = \theta$ radians and OC is perpendicular to OA.

(i) Find an expression in terms of r and θ for the perimeter of the plate. \hfill [3]

(ii) For the case where $r = 10$ and $\theta = \frac{1}{2}\pi$, find the area of the plate. \hfill [3]

Q12.

4

In the diagram, $ABCD$ is a parallelogram with $AB = BD = DC = 10$ cm and angle $ABD = 0.8$ radians. APD and BQC are arcs of circles with centres B and D respectively.

(i) Find the area of the parallelogram $ABCD$. \hfill [2]

(ii) Find the area of the complete figure $ABQCDP$. \hfill [2]

(iii) Find the perimeter of the complete figure $ABQCDP$. \hfill [2]

Q13.
Q14.

The diagram shows a sector OAB of a circle with centre O and radius r. Angle AOB is θ radians. The point C on OA is such that BC is perpendicular to OA. The point D is on BC and the circular arc AD has centre C.

(i) Find AC in terms of r and θ. \[\text{[1]} \]

(ii) Find the perimeter of the shaded region ABD when $\theta = \frac{1}{2}\pi$ and $r = 4$, giving your answer as an exact value. \[\text{[6]} \]

Q15.

In the diagram, D lies on the side AB of triangle ABC and CD is an arc of a circle with centre A and radius 2 cm. The line BC is of length $2\sqrt{3}$ cm and is perpendicular to AC. Find the area of the shaded region BDC, giving your answer in terms of π and $\sqrt{3}$. \[\text{[4]} \]
The diagram shows a metal plate made by fixing together two pieces, \(\triangle ABCD \) (shaded) and \(\triangle AED \) (unshaded). The piece \(\triangle ABCD \) is a minor sector of a circle with centre \(O \) and radius \(2r \). The piece \(\triangle AED \) is a major sector of a circle with centre \(O \) and radius \(r \). Angle \(AOD \) is \(\alpha \) radians. Simplifying your answers where possible, find, in terms of \(\alpha \), \(\pi \) and \(r \),

(i) the perimeter of the metal plate, \[3\]

(ii) the area of the metal plate. \[3\]

It is now given that the shaded and unshaded pieces are equal in area.

(iii) Find \(\alpha \) in terms of \(\pi \). \[2\]

Q16.

The diagram shows sector \(\triangle AOB \) with centre \(O \) and radius 11 cm. Angle \(AOB = \alpha \) radians. Points \(C \) and \(D \) lie on \(OA \) and \(OB \) respectively. Arc \(CD \) has centre \(O \) and radius 5 cm.

(i) The area of the shaded region \(ABDC \) is equal to \(k \) times the area of the unshaded region \(OCD \). Find \(k \). \[3\]

(ii) The perimeter of the shaded region \(ABDC \) is equal to twice the perimeter of the unshaded region \(OCD \). Find the exact value of \(\alpha \). \[4\]