Q1.

10

The diagram shows the parallelogram $OABC$. Given that $\overrightarrow{OA} = i + 3j + 3k$ and $\overrightarrow{OC} = 3i - j + k$, find

(i) the unit vector in the direction of \overrightarrow{OB}, [3]
(ii) the acute angle between the diagonals of the parallelogram, [5]
(iii) the perimeter of the parallelogram, correct to 1 decimal place. [3]

Q2.

6 Relative to an origin O, the position vectors of the points A, B and C are given by

$\overrightarrow{OA} = i - 2j + 4k$, $\overrightarrow{OB} = 3i + 2j + 8k$, $\overrightarrow{OC} = -i - 2j + 10k$.

(i) Use a scalar product to find angle ABC. [6]
(ii) Find the perimeter of triangle ABC, giving your answer correct to 2 decimal places. [2]

Q3.
Q4.

The diagram shows a prism $ABCDPQRS$ with a horizontal square base $APSD$ with sides of length 6 cm. The cross-section $ABCD$ is a trapezium and is such that the vertical edges AB and DC are of lengths 5 cm and 2 cm respectively. Unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to AD, AP and AB respectively.

(i) Express each of the vectors \overrightarrow{CP} and \overrightarrow{CQ} in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.

(ii) Use a scalar product to calculate angle PCQ.

Q5.

In the diagram, $OABCDEF$ is a rectangular block in which $OA = OD = 6$ cm and $AB = 12$ cm. The unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively. The point P is the mid-point of DG, Q is the centre of the square face $CBFG$ and R lies on AB such that $AR = 4$ cm.

(i) Express each of the vectors \overrightarrow{PQ} and \overrightarrow{RQ} in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.

(ii) Use a scalar product to find angle RQP.

www.youtube.com/megalecture
6 Two vectors \(\mathbf{u} \) and \(\mathbf{v} \) are such that
\[
\mathbf{u} = \begin{pmatrix} p^2 \\ -2 \\ 6 \end{pmatrix} \quad \text{and} \quad \mathbf{v} = \begin{pmatrix} 2 \\ p - 1 \\ 2p + 1 \end{pmatrix},
\]
where \(p \) is a constant.

(i) Find the values of \(p \) for which \(\mathbf{u} \) is perpendicular to \(\mathbf{v} \). [3]

(ii) For the case where \(p = 1 \), find the angle between the directions of \(\mathbf{u} \) and \(\mathbf{v} \). [4]

Q6.

2 Relative to an origin \(O \), the position vectors of the points \(A, B \) and \(C \) are given by
\[
\overrightarrow{OA} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 1 \\ 3 \\ p \end{pmatrix}.
\]

Find

(i) the unit vector in the direction of \(\overrightarrow{AB} \). [3]

(ii) the value of the constant \(p \) for which angle \(BOC = 90^\circ \). [2]

Q7.

6 Relative to an origin \(O \), the position vectors of three points \(A, B \) and \(C \), are given by
\[
\overrightarrow{OA} = i + 2p j + qk, \quad \overrightarrow{OB} = qj - 2p k \quad \text{and} \quad \overrightarrow{OC} = -(4p^2 + q^2)i + 2pj + qk,
\]
where \(p \) and \(q \) are constants.

(i) Show that \(\overrightarrow{OA} \) is perpendicular to \(\overrightarrow{OC} \) for all non-zero values of \(p \) and \(q \). [2]

(ii) Find the magnitude of \(\overrightarrow{OA} \) in terms of \(p \) and \(q \). [2]

(iii) For the case where \(p = 3 \) and \(q = 2 \), find the unit vector parallel to \(\overrightarrow{OA} \). [3]

Q8.
The diagram shows a parallelogram \(OABC \) in which
\[
\overrightarrow{OA} = \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OB} = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}.
\]

(i) Use a scalar product to find angle \(BOC \). [6]

(ii) Find a vector which has magnitude 35 and is parallel to the vector \(\overrightarrow{OC} \). [2]

Q9.

Relative to an origin \(O \), the position vectors of the points \(A, B \) and \(C \) are given by
\[
\overrightarrow{OA} = \begin{pmatrix} 2 \\ 3 \\ -6 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 0 \\ -6 \\ 8 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} -2 \\ 5 \\ -2 \end{pmatrix}.
\]

(i) Find angle \(AOB \). [4]

(ii) Find the vector which is in the same direction as \(\overrightarrow{AC} \) and has magnitude 30. [3]

(iii) Find the value of the constant \(p \) for which \(\overrightarrow{OA} + p \overrightarrow{OB} \) is perpendicular to \(\overrightarrow{OC} \). [3]

Q10.
The diagram shows a pyramid $OABC$ with a horizontal base OAB where $OA = 6\text{ cm}$, $OB = 8\text{ cm}$ and angle $AOB = 90^\circ$. The point C is vertically above O and $OC = 10\text{ cm}$. Unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to OA, OB and OC as shown.

Use a scalar product to find angle ACB. [6]

Q11.

10

The diagram shows triangle OAB, in which the position vectors of A and B with respect to O are given by

$$\overrightarrow{OA} = 2\mathbf{i} + j - 3\mathbf{k} \quad \text{and} \quad \overrightarrow{OB} = -3\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}.$$

C is a point on OA such that $\overrightarrow{OC} = p\overrightarrow{OA}$, where p is a constant.

(i) Find angle AOB. [4]

(ii) Find \overrightarrow{BC} in terms of p and vectors \mathbf{i}, \mathbf{j} and \mathbf{k}. [1]

(iii) Find the value of p given that BC is perpendicular to OA. [4]

Q12.
Q13.

Relative to an origin O, the position vectors of points A and B are $3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$ and $5\mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$ respectively.

(i) Use a scalar product to find angle $\angle BOA$. [4]

The point C is the mid-point of AB. The point D is such that $\overrightarrow{OD} = 2\overrightarrow{OB}$.

(ii) Find \overrightarrow{DC}. [4]

Q14.

The position vectors of points A and B relative to an origin O are \mathbf{a} and \mathbf{b} respectively. The position vectors of points C and D relative to O are $3\mathbf{a}$ and $2\mathbf{b}$ respectively. It is given that

\[
\mathbf{a} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} 4 \\ 0 \\ 6 \end{pmatrix}.
\]

(i) Find the unit vector in the direction of \overrightarrow{CD}. [3]

(ii) The point E is the mid-point of CD. Find angle $\angle EOD$. [6]

Q15.

The position vectors of points A and B relative to an origin O are given by

\[
\overrightarrow{OA} = \begin{pmatrix} p \\ 1 \\ 1 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OB} = \begin{pmatrix} 4 \\ 2 \\ p \end{pmatrix},
\]

where p is a constant.

(i) In the case where OAB is a straight line, state the value of p and find the unit vector in the direction of \overrightarrow{OA}. [3]

(ii) In the case where OA is perpendicular to AB, find the possible values of p. [5]

(iii) In the case where $p = 3$, the point C is such that $OABC$ is a parallelogram. Find the position vector of C. [2]
Q16.

The diagram shows a pyramid $OABCD$ in which the vertical edge OD is 3 units in length. The point E is the centre of the horizontal rectangular base $OABC$. The sides OA and AB have lengths of 6 units and 4 units respectively. The unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to \overrightarrow{OA}, \overrightarrow{OC} and \overrightarrow{OD} respectively.

(i) Express each of the vectors \overrightarrow{DE} and \overrightarrow{EB} in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}. \hspace{1cm} [2]

(ii) Use a scalar product to find angle $\angle BDE$. \hspace{1cm} [4]

Q17.

The diagram shows a pyramid $OABC$ in which the edge OC is vertical. The horizontal base OAB is a triangle, right-angled at O, and D is the mid-point of AB. The edges OA, OE and OC have lengths of 8 units, 6 units and 10 units respectively. The unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to \overrightarrow{OA}, \overrightarrow{OB} and \overrightarrow{OC} respectively.

(i) Express each of the vectors \overrightarrow{OD} and \overrightarrow{BC} in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}. \hspace{1cm} [2]

(ii) Use a scalar product to find angle $\angle OCD$. \hspace{1cm} [4]