Electric current, p.d., and resistance

Q-1) What is current?

Electric current is the rate of flow of electrons electric charges past a point. A Coulomb (C) charge is:

\[I = \frac{\Delta Q}{t} \]

unit = Amps (A)

Conventional current: \[\text{e}^- \]

Q-2) What is electric charge?

\[Q = I \times t \]

The unit of charge is Coulomb (C). One Coulomb is the charge which flows at a time of 1 second when the current is 1 A.

Charge on 1 electron = \(1.6 \times 10^{-19}\)

Q-3) Difference between e.m.f. and p.d.

<table>
<thead>
<tr>
<th>e.m.f.</th>
<th>p.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>emf is the amount of chemical energy converted to electrical energy per unit charge.</td>
<td>p.d. is the electrical energy converted to other forms of energy (e.g., heat) per unit charge.</td>
</tr>
<tr>
<td>It's an input to the circuit.</td>
<td>It's an output to the circuit.</td>
</tr>
<tr>
<td>Sum of all p.d.</td>
<td>[V = \frac{\text{work done (energy)}}{\text{charge}}]</td>
</tr>
</tbody>
</table>

Q-4) What is the Ohm's law?

\[V = IR \]
voltage is proportional to current.
0.5) What is power?

Power is the rate at which energy is transferred.

\[P = I \times V \]
\[P = V^2 / R \]
\[P = I^2 R. \]

Energy transferred = \[P \times t = I \times V \times t. \]

* Power = \text{energy transferred} / \text{time taken}.

\[P = \frac{V \times Q}{t} \quad \Rightarrow \quad Q = I \times t. \]
\[P = \frac{V \times I \times t}{t} \]
\[P = IV. \]