Chapter 2 Logarithmic and Exponential Functions

Oct/Nov 2002

3 (i) Show that the equation
\[\log_{10}(x + 5) = 2 - \log_{10}x \]
may be written as a quadratic equation in \(x \). \[3\]

(ii) Hence find the value of \(x \) satisfying the equation
\[\log_{10}(x + 5) = 2 - \log_{10}x. \] \[2\]

Oct/Nov 2003

1 Solve the inequality \(|2^x - 8| < 5\). \[4\]

May/June 2004

4 (i) Show that if \(y = 2^x \), then the equation
\[2^x - 2^{-x} = 1 \]
can be written as a quadratic equation in \(y \). \[2\]

(ii) Hence solve the equation
\[2^x - 2^{-x} = 1. \] \[4\]

Oct/Nov 2004

2 Solve the equation
\[\ln(1 + x) = 1 + \ln x, \]
giving your answer correct to 2 significant figures. \[4\]

May/June 2005

1 Given that \(x = 4(5^{-y}) \), express \(y \) in terms of \(x \). \[3\]

2

Two variable quantities \(x \) and \(y \) are related by the equation \(y = Ax^n \), where \(A \) and \(n \) are constants. The diagram shows the result of plotting \(\ln y \) against \(\ln x \) for four pairs of values of \(x \) and \(y \). Use the diagram to estimate the values of \(A \) and \(n \). \[5\]
May/June 2007

4 Using the substitution \(u = 3^x \), or otherwise, solve, correct to 3 significant figures, the equation
\[3^x = 2 + 3^{-x}. \] \[6 \]

May/June 2008

2 Solve, correct to 3 significant figures, the equation
\[e^x + e^{2x} = e^{3x}. \] \[5 \]

Oct/Nov 2008

1 Solve the equation
\[\ln(x + 2) = 2 + \ln x, \]
giving your answer correct to 3 decimal places. \[3 \]

May/June 2009

1 Solve the equation \(\ln(2 + e^{-x}) = 2 \), giving your answer correct to 2 decimal places. \[4 \]

Oct/Nov 2009/31

2 Solve the equation \(3^x + 2 = 3^2 + x \), giving your answer correct to 3 significant figures. \[4 \]

Oct/Nov 2009/32

1 Solve the equation
\[\ln(5 - x) = \ln 5 - \ln x, \]
giving your answers correct to 3 significant figures. \[4 \]

May/June 2010/31

3 The variables \(x \) and \(y \) satisfy the equation \(x^n y = C \), where \(n \) and \(C \) are constants. When \(x = 1.10, \ y = 5.20 \), and when \(x = 3.20, \ y = 1.05 \).

(i) Find the values of \(n \) and \(C \). \[5 \]

(ii) Explain why the graph of \(\ln y \) against \(\ln x \) is a straight line. \[1 \]

May/June 2010/32

1 Solve the equation
\[\frac{2^x + 1}{2^x - 1} = 5, \]
giving your answer correct to 3 significant figures. \[4 \]
2 The variables \(x \) and \(y \) satisfy the equation \(y^3 = Ae^{2x} \), where \(A \) is a constant. The graph of \(\ln y \) against \(x \) is a straight line.

(i) Find the gradient of this line. [2]

(ii) Given that the line intersects the axis of \(\ln y \) at the point where \(\ln y = 0.5 \), find the value of \(A \) correct to 2 decimal places. [2]