Chapter 7 Vectors

May/June 2002

8 The straight line l passes through the points A and B whose position vectors are $i + k$ and $4i - j + 3k$ respectively. The plane p has equation $x + 3y - 2z = 3$.

(i) Given that l intersects p, find the position vector of the point of intersection.

(ii) Find the equation of the plane which contains l and is perpendicular to p, giving your answer in the form $ax + by + cz = 1$.

Oct/Nov 2002

10 With respect to the origin O, the points A, B, C, D have position vectors given by

$$
\overrightarrow{OA} = 4i + k, \quad \overrightarrow{OB} = 5i - 2j - 2k, \quad \overrightarrow{OC} = i + j, \quad \overrightarrow{OD} = -i - 4k.
$$

(i) Calculate the acute angle between the lines AB and CD.

(ii) Prove that the lines AB and CD intersect.

(iii) The point P has position vector $i + 5j + 6k$. Show that the perpendicular distance from P to the line AB is equal to $\sqrt{3}$.

May/June 2003

9 Two planes have equations $x + 2y - 2z = 2$ and $2x - 3y + 6z = 3$. The planes intersect in the straight line l.

(i) Calculate the acute angle between the two planes.

(ii) Find a vector equation for the line l.

Oct/Nov 2003

10 The lines l and m have vector equations

$$
r = i - 2k + s(2i + j + 3k) \quad \text{and} \quad r = 6i - 5j + 4k + t(i - 2j + k)
$$

respectively.

(i) Show that l and m intersect, and find the position vector of their point of intersection.

(ii) Find the equation of the plane containing l and m, giving your answer in the form $ax + by + cz = d$.

May/June 2004

11 With respect to the origin O, the points P, Q, R, S have position vectors given by

\[
\overrightarrow{OP} = \mathbf{i} - \mathbf{k}, \quad \overrightarrow{OQ} = -2\mathbf{i} + 4\mathbf{j}, \quad \overrightarrow{OR} = 4\mathbf{i} + 2\mathbf{j} + \mathbf{k}, \quad \overrightarrow{OS} = 3\mathbf{i} + 5\mathbf{j} - 6\mathbf{k}.
\]

(i) Find the equation of the plane containing P, Q and R, giving your answer in the form $ax + by + cz = d$. \[6\]

(ii) The point N is the foot of the perpendicular from S to this plane. Find the position vector of N and show that the length of SN is 7. \[6\]

Oct/Nov 2004

9 The lines l and m have vector equations

\[
\mathbf{r} = 2\mathbf{i} - \mathbf{j} + 4\mathbf{k} + s(\mathbf{i} + \mathbf{j} - \mathbf{k}) \quad \text{and} \quad \mathbf{r} = -2\mathbf{i} + 2\mathbf{j} + \mathbf{k} + t(-2\mathbf{i} + \mathbf{j} + \mathbf{k})
\]

respectively.

(i) Show that l and m do not intersect. \[4\]

The point P lies on l and the point Q has position vector $2\mathbf{i} - \mathbf{k}$.

(ii) Given that the line PQ is perpendicular to l, find the position vector of P. \[4\]

(iii) Verify that Q lies on m and that PQ is perpendicular to m. \[2\]

May/June 2005

10 With respect to the origin O, the points A and B have position vectors given by

\[
\overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \quad \text{and} \quad \overrightarrow{OB} = \mathbf{i} + 4\mathbf{j} + 3\mathbf{k}.
\]

The line l has vector equation $\mathbf{r} = 4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k} + s(\mathbf{i} + 2\mathbf{j} + \mathbf{k})$.

(i) Prove that the line l does not intersect the line through A and B. \[5\]

(ii) Find the equation of the plane containing l and the point A, giving your answer in the form $ax + by + cz = d$. \[6\]

Oct/Nov 2005

10 The straight line l passes through the points A and B with position vectors

\[
2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \quad \text{and} \quad \mathbf{i} + 4\mathbf{j} + 2\mathbf{k}
\]

respectively. This line intersects the plane p with equation $x - 2y + 2z = 6$ at the point C.

(i) Find the position vector of C. \[4\]

(ii) Find the acute angle between l and p. \[4\]

(iii) Show that the perpendicular distance from A to p is equal to 2. \[3\]
Online Classes : Megalecture@gmail.com
www.youtube.com/megalecture
www.megalecture.com

May/June 2006

10 The points \(A \) and \(B \) have position vectors, relative to the origin \(O \), given by

\[
\overrightarrow{OA} = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OB} = \begin{pmatrix} 3 \\ -1 \\ -4 \end{pmatrix}.
\]

The line \(l \) passes through \(A \) and is parallel to \(\overrightarrow{OB} \). The point \(N \) is the foot of the perpendicular from \(B \) to \(l \).

(i) State a vector equation for the line \(l \). [1]

(ii) Find the position vector of \(N \) and show that \(BN = 3 \). [6]

(iii) Find the equation of the plane containing \(A, B \) and \(N \), giving your answer in the form \(ax + by + cz = d \). [5]

Oct/Nov 2006

7 The line \(l \) has equation \(\mathbf{r} = \mathbf{j} + \mathbf{k} + s(\mathbf{i} - 2\mathbf{j} + \mathbf{k}) \). The plane \(p \) has equation \(x + 2y + 3z = 5 \).

(i) Show that the line \(l \) lies in the plane \(p \). [3]

(ii) A second plane is perpendicular to the plane \(p \), parallel to the line \(l \) and contains the point with position vector \(2\mathbf{i} + \mathbf{j} + 4\mathbf{k} \). Find the equation of this plane, giving your answer in the form \(ax + by + cz = d \). [6]

May/June 2007

9

The diagram shows a set of rectangular axes \(Ox, Oy \) and \(Oz \), and three points \(A, B \) and \(C \) with position vectors \(\overrightarrow{OA} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \) and \(\overrightarrow{OC} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \).

(i) Find the equation of the plane \(ABC \), giving your answer in the form \(ax + by + cz = d \). [6]

(ii) Calculate the acute angle between the planes \(ABC \) and \(OAB \). [4]
Oct/Nov 2007

10 The straight line \(l \) has equation \(\mathbf{r} = \mathbf{i} + 6\mathbf{j} - 3\mathbf{k} + s(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) \). The plane \(p \) has equation \((\mathbf{r} - 3\mathbf{i}).(2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}) = 0 \). The line \(l \) intersects the plane \(p \) at the point \(A \).

(i) Find the position vector of \(A \). [3]

(ii) Find the acute angle between \(l \) and \(p \). [4]

(iii) Find a vector equation for the line which lies in \(p \), passes through \(A \) and is perpendicular to \(l \). [5]

May/June 2008

10 The points \(A \) and \(B \) have position vectors, relative to the origin \(O \), given by

\[
\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \quad \text{and} \quad \overrightarrow{OB} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}.
\]

The line \(l \) has vector equation

\[
\mathbf{r} = (1 - 2t)\mathbf{i} + (5 + t)\mathbf{j} + (2 - t)\mathbf{k}.
\]

(i) Show that \(l \) does not intersect the line passing through \(A \) and \(B \). [4]

(ii) The point \(P \) lies on \(l \) and is such that angle \(PAB \) is equal to \(60^\circ \). Given that the position vector of \(P \) is \((1 - 2t)\mathbf{i} + (5 + t)\mathbf{j} + (2 - t)\mathbf{k}\), show that \(3t^2 + 7t + 2 = 0 \). Hence find the only possible position vector of \(P \). [6]

Oct/Nov 2008

7 Two planes have equations \(2x - y - 3z = 7 \) and \(x + 2y + 2z = 0 \).

(i) Find the acute angle between the planes. [4]

(ii) Find a vector equation for their line of intersection. [6]

May/June 2009

9 The line \(l \) has equation \(\mathbf{r} = 4\mathbf{i} + 2\mathbf{j} - \mathbf{k} + t(2\mathbf{i} - \mathbf{j} - 2\mathbf{k}) \). It is given that \(l \) lies in the plane with equation \(2x + by + cz = 1 \), where \(b \) and \(c \) are constants.

(i) Find the values of \(b \) and \(c \). [6]

(ii) The point \(P \) has position vector \(2\mathbf{j} + 4\mathbf{k} \). Show that the perpendicular distance from \(P \) to \(l \) is \(\sqrt{5} \). [5]
6 With respect to the origin O, the points A, B and C have position vectors given by
\[\overrightarrow{OA} = \mathbf{i} - \mathbf{k}, \quad \overrightarrow{OB} = 3\mathbf{i} + 2\mathbf{j} - 3\mathbf{k} \quad \text{and} \quad \overrightarrow{OC} = 4\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}. \]
The mid-point of AB is M. The point N lies on AC between A and C and is such that $AN = 2NC$.

(i) Find a vector equation of the line MN. \[4\]

(ii) It is given that MN intersects BC at the point P. Find the position vector of P. \[4\]

Oct/Nov 2009/32

10 The plane p has equation $2x - 3y + 6z = 16$. The plane q is parallel to p and contains the point with position vector $\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$.

(i) Find the equation of q, giving your answer in the form $ax + by + cz = d$. \[2\]

(ii) Calculate the perpendicular distance between p and q. \[3\]

(iii) The line l is parallel to the plane p and also parallel to the plane with equation $x - 2y + 2z = 5$. Given that l passes through the origin, find a vector equation for l. \[5\]

May/June 2010/31

10 The lines l and m have vector equations
\[\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + s(\mathbf{i} - \mathbf{j} + 2\mathbf{k}) \quad \text{and} \quad \mathbf{r} = 4\mathbf{i} + 6\mathbf{j} + \mathbf{k} + t(2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \]
respectively.

(i) Show that l and m intersect. \[4\]

(ii) Calculate the acute angle between the lines. \[3\]

(iii) Find the equation of the plane containing l and m, giving your answer in the form $ax + by + cz = d$. \[5\]

May/June 2010/32

9 The plane p has equation $3x + 2y + 4z = 13$. A second plane q is perpendicular to p and has equation $ax + y + z = 4$, where a is a constant.

(i) Find the value of a. \[3\]

(ii) The line with equation $\mathbf{r} = \mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$ meets the plane p at the point A and the plane q at the point B. Find the length of AB. \[6\]
The straight line l has equation $\mathbf{r} = 2\mathbf{i} - \mathbf{j} - 4\mathbf{k} + \lambda (\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$. The plane p has equation $3x - y + 2z = 9$. The line l intersects the plane p at the point A.

(i) Find the position vector of A. [3]

(ii) Find the acute angle between l and p. [4]

(iii) Find an equation for the plane which contains l and is perpendicular to p, giving your answer in the form $ax + by + cz = d$. [5]

Vectors

- understand the significance of all the symbols used when the equation of a straight line is expressed in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$;
- determine whether two lines are parallel, intersect or are skew;
- find the angle between two lines, and the point of intersection of two lines when it exists;
- understand the significance of all the symbols used when the equation of a plane is expressed in either of the forms $ax + by + cz = d$ or $(\mathbf{r} - \mathbf{a}).\mathbf{n} = 0$;
- use equations of lines and planes to solve problems concerning distances, angles and intersections, and in particular find the equation of a line or a plane, given sufficient information, determine whether a line lies in a plane, is parallel to a plane, or intersects a plane, and find the point of intersection of a line and a plane when it exists, find the line of intersection of two non-parallel planes, find the perpendicular distance from a point to a plane, and from a point to a line, find the angle between two planes, and the angle between a line and a plane.